Formulators / Topics / Manufacturers / Info For... / Finished Adhesives and Sealants / Pressure-Sensitive Adhesives (PSAs)

Acrylic Pressure-Sensitive Adhesives

Novel, all-acrylic compositions with inherently lower surface energy display significantly improved adhesion to LSE substrates such as polyethylene and polypropylene.

Table 1. Surface Energy of Various Materials and Common PSA

The prevailing trend toward the use of lighter weight and lower cost engineered plastics in automotive, construction, aerospace, electronics, and other industrial uses has created a need for pressure-sensitive materials that can bond well to these new, inherently low-surface-energy (LSE) plastics. This article discusses novel, all-acrylic compositions with inherently lower surface energy that display significantly improved adhesion to LSE substrates such as polyethylene and polypropylene. In addition, it will address evidence where these new compositions demonstrate compatibility with tackifiers historically known to be incompatible with more traditional acrylic pressure-sensitive polymers.

Figure 1. Chang's Quadrant Approach to Material Classification

(Meth)Acrylic Copolymers

Pressure-sensitive polymer compositions have been used for well over 50 years. Many types of polymers can be made pressure sensitive via various formulation methods. (Meth)acrylic copolymers are one of the most widely used polymer classes for the production of pressure-sensitive adhesives (PSAs). They are relatively low cost, thermally and oxidatively stable, optically clear, and require little to no formulation to be useful pressure-sensitive materials.

Pressure-sensitive copolymers can be made from a variety of (meth)acrylic monomers. The large selection of available monomers enables a wide range of viscoelastic performance characteristics. Various chemically functional monomers provide a diverse selection of crosslinking options that can be tailored to specific applications.

(Meth)acrylic copolymers can be polymerized and used industrially in a waterborne solvent cast, melt or monomer polymer syrup. Any of these delivery formats can be selected depending on final adhesive performance requirements, the manufacturing assets available and cost requirements. Many high-performance applications require the improved coat quality, coating thickness and material properties achievable through solvent cast, or melt and syrup techniques.

Figure 2. Adhesive Quadrants Classified as Adhesive Types

Historically, (meth)acrylic PSAs have delivered adequate adhesion to a broad base of materials used in the industry. Ever-evolving trends in the marketplace have seen, and continue to see, the replacement of metal, glass, and wood assembly or construction materials with lower cost, lower weight plastic alternatives. This continuing trend toward lighter weight, lower cost materials has challenged the ability of traditional acrylic PSAs to adhere to these new substrates because, in most cases, these new materials have a much lower surface energy than traditional materials. Traditional acrylic PSAs adhere very well to relatively polar substrates such as steel, aluminum, tin, glass and wood. These types of materials tend to have higher free surface energy or surface tension than that of the PSA (see Table 1).1

Given the fact that an adherend must have higher surface energy than the corresponding adherent, the common acrylic PSA has no difficulty wetting the materials in Table 1 to form a bond surface. These types of materials have been-and are continuing to be-replaced in new material construction in various applications, including automotive assembly, building and construction, electronics, and medical devices. Many of these market areas are moving toward lighter weight and often lower cost plastic materials, but still require PSAs to bond various components. These lighter weight plastic components can be challenging to adhere to because they are generally much lower in surface energy, as seen in Table 2.1

Table 2. Useful Plastic Materials Surface Energy Compared to Common Acrylic PSA

Monomer Selection

As mentioned previously, a variety of (meth)acrylic monomers is available for use in the design of an acrylic PSA. These materials can be fairly polar or non-polar, depending on the length and chemical nature of the ester side chain. The polarity of a monomer can be expressed as solubility parameter2 (cal/cm3),1,2 and selecting a monomer with lower solubility parameters results in a final adhesive that can wet lower surface energy materials.

Some common acrylic base monomers, functional monomers, and polar/non-polar glass-transition temperature (Tg) modifying monomers, along with their corresponding glass-transition temperatures and solubility parameters, can be found in Table 3.3 Designing an acrylic PSA with monomers that have lower solubility parameters will inherently enable the PSA to wet a wider variety of materials, which can include various plastic substrates.

Table 3. Common Acrylic Monomers with Temperatures and Solubility Parameters

In Viscoelastic Windows of Pressure Sensitive Adhesives,4 E.P. Chang details a quadrant approach of classifying polymeric materials by loss and storage modulus measurements. This method uses mechanical analysis to predict the ability of a material to flow. It does not predict wetting because it does not include surface energy effects. However, using these techniques, general application quadrants can be identified by material flow properties, as seen in Figure 1.

From these quadrants, PSAs can be classified by their flow characteristic into types, which often translate into applicable market applications. As seen in Figure 2, quadrant 4, high G’’ low G’ materials, or Type 1 PSAs, generally are high-peel and low-shear materials that are usually high solids. These materials tend to be water based and are used in markets such as labels and graphics.

Type 2, the central region of the viscoelastic window, includes moderate- to high-peel and moderate-shear materials. Type 2 PSAs are used in some high-performance label, vinyl graphic and medical applications. Quadrant 2 from the viscoelastic windows, or Type 3 adhesive, includes moderate-peel and high-shear materials. Type 3 PSAs can be used for high-performance tape applications. Quadrant 3, or Type 4, materials include a range of removable or temporary adhesives used for protective films and medical applications.

A tool used in designing an acrylic PSA of desired viscoelastic properties is to modify the glass transition of the material. Traditionally, this is done by incorporating high Tg modifying, or chemically functional monomers, as shown previously in Table 3. However, incorporating significant amounts of these monomers into an acrylic-base polymer can raise the solubility parameter of the material such that it can no longer wet low-surface-energy substrates, thereby preventing an intimate bond.

Table 4. PSA Performance Test Methods

One traditional method of making an acrylic PSA chemically functional, so it can be chemically crosslinked, is through the incorporation of acrylic acid. Acrylic acid has a low molar equivalency weight and relatively high Tg, and can stiffen the acrylic-base polymer because the acid functionality is very close to the main polymer chain. High molar equivalency weight acid functional acrylic monomer exists in the market. These materials tend to be lower Tg and do not stiffen the main acrylic base polymer as much as acrylic acid because the acid group is further removed from the backbone.

Because the acid functionality on these materials is separated from the main chain by some chemical spacing group, the acid functionality is better able to take part in hydrogen bonding with a substrate. Higher molar equivalency acid functional materials also result in an overall lower solubility parameter polymer because there are less acid groups than an acrylic acid-containing system. These functional monomers are often the adducts of alcohol or amine functional (meth)acrylics and an anhydride, or ring-opened cyclic compounds, such as caprolactam.

Table 5. New Type 2 and 3 Polymer Designs


Unless otherwise noted, the test methods shown in Table 4 were used for evaluating the adhesive properties of the acrylic polymers. Two acrylic-base polymers have been developed using low solubility parameter Tg-modifying and a high equivalency weight acid functional monomer. The new Type 2 and Type 3 polymers have a Tg of -45°C and -35°C, respectively, as shown in Table 5.

The polymers were cast from solvent and crosslinked with aluminum acetyl acetonate. They were then compared to traditional, commercially available Type 2 and Type 3 polymers that contain short-chain polar Tg-modifying monomers, and acrylic acid. All PSA testing was performed at a 50 g/m2 coat weight, using a polyethylene terephthalate (PET) face stock. Test methods conform with PSTC 101.

Table 6. Peel Adhesion to Stainless Steel (4.41 lbs/in.2 static shear) and WPI of Four Polymers

Table 6 displays the 180° peel adhesion to stainless steel (4.4 lbs/in.2 static shear) and the WPI of the traditional Type 2 and Type 3 polymers, compared to the LSE Type 2 and Type 3 polymers. The properties of the new polymers are comparable to the traditional acrylic PSAs when measured on stainless steel. However, when the adhesion to common olefin substrates, like polypropylene and high-density polyethylene, are measured, significant differences are evident (see Table 7). Both the traditional Type 2 and Type 3 polymers exhibit low peel values and severe zipping or slip stick on polypropylene, and smooth but low adhesion values on high- density polyethylene compared to the new LSE compositions.

Table 7. Peel Adhesion to Polypropylene and High-Density Polyethylene


The addition of a tackifying resin is an often-used method of improving adhesion to low-surface energy substrates. Tackifying resins are used to raise the Tg, lower the modulus, and often lower the solubility parameter of an adhesive formulation. Tackifying resins can be classified into three groups: hydrocarbon resins are based on petroleum feed stocks and are synthetically polymerized; rosin- and terpene-based resins are derived from natural feed stocks and then chemically modified; and rosin ester tackifiers (one of the most common tackifiers used in acrylic PSAs) are the product of esterification of crude rosin acid with glycerol or other common multi-functional alcohol.

Figure 3. Peel Adhesion as a Function of Thermal Aging Time

Table 8 displays the adhesion performance, on both polypropylene and stainless steel, of a 20 parts-per-hundred (PPH) addition of an 85°C softening-point rosin ester to the base polymers mentioned above. The rosin ester tackifier enabled the traditional Type 2 polymer to adhere well to polypropylene, although the traditional Type 3 polymer still exhibited zipping and low adhesion with the rosin ester addition. Both LSE polymers exhibited the expected increase in peel associated with the tackifier addition while maintaining high shear performance.

Terpene resins are produced by oligomerization of pinene and limonene to produce non-polar tackifiers with a low molecular weight and a high softening point. Terpene resins are not commonly used in acrylic PSAs because, traditionally, they have very limited solubility in acrylics containing polar monomers. However, when low-solubility acrylic monomers are used to design an acrylic PSA, like those of the LSE Type 2 and Type 3 mentioned previously, these non-polar tackifers become useful. Table 9 displays the adhesive performance of a 105°C softening-point polyterpene resin addition at a 20 PPH loading level to the four polymers above.

The terpene addition to the LSE-type polymers results in a good, broad-based adhesive to low- and high-surface energy substrates, as well as excellent shear. However, the terpene resin results in a slight improvement in the case of the traditional Type 2, and zipping failures when added to the traditional Type 3.

Table 8. Adhesive Performance for 20 PPH Loading Addition of Rosin Ester Tackifier

In addition to enhanced adhesion to low-surface-energy substrates, the LSE compositions and the terpene-tackified materials offer increased thermal stability over traditional rosin ester-containing acrylic PSAs. Thermal aging of several adhesive constructions was performed at 120°C on propylene test panels. Adhesion was measured prior to thermal exposure and every week thereafter for four weeks.

Figure 3 displays the peel adhesion measured at each interval for a commercially available high-strength adhesive; a rosin ester-containing acrylic; an all-acrylic, low-solubility parameter composition; and a terpene-tackified low-solubility parameter acrylic. The rosin ester-containing acrylic and the commercially available high-strength adhesive experienced a dramatic decrease in adhesion upon thermal exposure. However, the all-acrylic composition retained virtually all its adhesion through four weeks of aging.

The terpene-containing sample lost about 50% of its peel force over the four-week aging period, which is still superior to that of the control. This decrease in peel exhibited by the tackified materials is likely caused by residual unsaturation being oxidized in the tackifiers. The rosin ester used in this study is hydrogenated, but hydrogenation is never driven to 100% conversion. The terpene materials are inherently more saturated than the rosin-based tackifiers, but still contain some unsaturations. However, the terpene-tackified material offers a thermal stability improvement over rosin ester-containing adhesives.

Table 9. Adhesion Data for 20 PPH Terpene Addition

Inter-Penetrating Networks

Polyacrylate polyether inter-penetrating networks (IPNs) have been previously disclosed.5 These materials combine the elastomeric, high modulus and flexibility of a sealant with the wetting and viscoelastic characteristic of a PSA to produce a hybrid IPN high-performance PSA. Silane-functional telechelic polypropylene oxide is a class of reactive oligomer that can be used to make the IPN materials.

The combination of the polypropylene oxide oligomer, which has a very low solubility parameter compared with the low solubility parameter of acrylic polymers previously discussed, allows for the production of high-performance adhesives that adhere very well to olefin substrates. Table 10 details the adhesive performance of an IPN-made using the Type 3 LSE acrylic discussed above, a propylene oxide oligmer and a terpene resin-in comparison to the terpene-tackified Type 3 LSE polymer and a commercially available high-strength LSE adhesive.

The IPN material exhibits enhanced peel and shear properties over the terpene-tackified base polymer alone. It also displays significantly higher WPI, indicating that the IPN material will slit and convert much easier. The enhancement in peel, shear and WPI suggests some synergistic effects of the polyacrylate polyether IPN system.

Table 10. Adhesive Performance of the LSE IPN Material Compound to the Terpene-Tackified Type 3 Polymer and a High-Strength Commercially Available Adhesive


The expanding use of lightweight LSE plastic materials in many common applications requiring PSAs has created the need for materials that can bond well to these new substrates. Acrylic PSAs exhibiting enhanced adhesion to these LSE plastics have been demonstrated.

Common formulation additives, such as tackifiers, can be used. In addition, low solubility parameter tackifying resins-such as polyterpene resins-have shown applicability with these new acrylic PSAs. These all-acrylic and terpene-tackified pressure-sensitive materials also offer enhanced thermal stability over traditional rosin-containing adhesives. Finally, IPNs made with these low-solubility parameter acrylics enable the production of a high-performance hybrid PSA.

For additional information, contact Avery Dennison Corp. at 250 Chester St. #5M, Painesville, OH 44077; phone (866) 462-8379; fax (440) 358-3298; email; or visit

Editor’s note: This article is based on a paper presented at the Pressure Sensitive Tape Council's TECH 34 conference.


1. Petrie, E., Handbook of Adhesive and Sealants, McGraw-Hill, New York, 2000.

2. Fedors, R., “A Method for Estimating Both Solubility Parameters and Molar Volumes of Liquids,” Polymer Engineering, February 1974, Vol. 14, No 2.

3. Brandrup, J., Immergut, E. H., and Grulke, E. A., “Glass Transition Temperatures of Polymers,” Polymer Handbook, Wiley, New Jersey, 1999, Vol. 1.

4. Chang, E. P., “Viscoelastic Properties of Pressure-Sensitive Adhesives,” The Journal of Adhesion, 1997, Vol. 60, pp. 233-248.

5. Zajaczkowski, M., “Acrylate-Polyether Based Pressure Sensitive Adhesives,” Proceedings of the Pressure Sensitive Tape Council Tech 30 Global Conference VI, Orlando, FL, May 16-18, 2007, Pressure Sensitive Tape Council.


Did you enjoy this article? Click here to subscribe to Adhesives & Sealants Industry Magazine.

You must login or register in order to post a comment.



Image Galleries

ASI April 2014 Photo Gallery

Our April 2014 issue is now available!


ExxonMobil Tackifier Expansion

Dwight Tozer, vice president of ExxonMobil’s Adhesion Industry business, discusses the company’s latest tackifier expansion project with Editor-in-Chief Susan Sutton.

More Podcasts

Adhesives & Sealants Industry Magazine

ASI march 2015 cover

2015 March

Welcome to our annual Raw Materials, Chemicals, Polymers and Additives Handbook!
Table Of Contents Subscribe

Paid Leave

President Obama recently announced he wants U.S. businesses and the federal government to provide paid sick leave and paid parental leave to all workers. Do you think this is a good idea?
View Results Poll Archive


Handbook of Sealant Technology

The Handbook of Sealant Technology provides an in-depth examination of sealants, reviewing their historical developments and fundamentals, adhesion theories and properties, and today’s wide range of applications.

More Products

ASI 2014 Buyers GuideASI's Buyers' Guide

Annual purchasing resource for equipment used in the manufacture/formulation of adhesives, sealants, pressure sensitives, tapes and labels and for application of finished adhesives. 


facebook_40px twitter_40  youtube_40pxlinkedin_40 google+ icon ASI 30px

Clear Seas Research

With access to over one million professionals and more than 60 industry-specific publications, Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.