A vial of nanocrystals in solution, which serve as “electronic glue” for semiconductor-based technologies.

University of Chicago Postdoctoral Scholar Maksym Kovalenko (left) working with nanocrystals in a glovebox in the laboratory of Dmitri Talapin, assistant professor in Chemistry. Working in the environmentally controlled conditions of the glovebox permits researchers to perform chemical procedures not possible under room conditions.

Photos by Dan Dry.

Researchers at the University of Chicago and Lawrence Berkeley National Laboratory have developed an “electronic glue” that could accelerate advances in semiconductor-based technologies, including solar cells and thermoelectric devices that convert sunlight and waste heat, respectively, into useful electrical energy.

Semiconductors have served as choice materials for many electronic and optical devices because of their physical properties. Commercial solar cells, computer chips and other semiconductor technologies typically use large semiconductor crystals, but these are expensive and can make large-scale applications such as rooftop solar-energy collectors prohibitive.

Dmitri Talapin is an assistant professor in Chemistry at the University of Chicago.

As an alternative, engineers see great potential in semiconductor nanocrystals that sometimes measure just a few hundred atoms each. Nanocrystals can be readily mass-produced and used for device manufacturing via inkjet printing and other solution-based processes. But a problem remains: The crystals are unable to efficiently transfer their electric charges to one another due to surface ligands - bulky, insulating organic molecules that cap nanocrystals.

The “electronic glue” developed in Dmitri Talapin’s laboratory at the University of Chicago solves the ligand problem. The team describes in the journalSciencehow substituting the insulating organic molecules with novel inorganic molecules dramatically increases the electronic coupling between nanocrystals. The University of Chicago licensed the underlying technology for thermoelectric applications to Evident Technologies in February.


Citation: “Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands,” Maksym V. Kovalendo, Department of Chemistry, University of Chicago; Marcus Scheele, Molecular Foundry, Lawrence Berkeley National Laboratory; and Dmitri V. Talapin, Department of Chemistry, University of Chicago, and Center for Nanoscale Materials, Argonne National Laboratory,Science, June 12, 2009.

Funding sources: American Chemical Society Petroleum Research Fund, The Chicago Energy Initiative, U.S. Department of Energy and Evident Technologies Inc.