Adhesives Mag logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Adhesives Mag logo
  • NEW PRODUCTS
  • NEWS
    • Adhesives & Sealants Headlines
    • Mergers/Acquisitions
    • Market Trends
    • TOP 20
  • TOPICS
    • Finished Adhesives and Sealants
    • Pressure-Sensitive Adhesives (PSAs)
    • Coatings
    • Raw Materials and Chemicals
    • Materials Handling/Processing
    • Meter/Mix/Dispense
    • Curing
    • Testing/Quality Control
    • Packaging of Adhesives & Sealants
    • Converting/Packaging
    • Composites
    • Sustainability
  • EVENTS
    • MAX
    • ASI Academy
    • Events Calendar
  • COLUMNS
    • European Perspectives
    • Strategic Solutions
    • Supply Chain Strategies
    • Tape Talk
  • MULTIMEDIA
    • Videos
    • Podcasts
    • Webinars
    • eBooks
  • EXPLORE
    • Adhesives in Action
    • Blog
    • ASI Store
    • Industry Links
    • Market Research
    • Classifieds
  • DIRECTORIES
    • Buyers' Guide
    • Global Adhesives & Sealants Directory
    • Raw Materials, Chemicals, Polymers and Additives Handbook
    • Equipment Handbook
    • Distributor Directory
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • ADVERTISE
      • Custom Content & Marketing Services
    • CONTACT
  • SIGN UP!
Finished Adhesives and SealantsFormulatorsManufacturersEnd User FeaturesInfo for Construction

Case Study: Polyurethane Sealants Lead to Energy Savings

Bridging the gaps in a building can bring significant heating and cooling savings.

By Jay A. Johnston Ph.D., Shen Tian, George Z. Pavlovich
Case study boosting productivity
Case study boosting productivity
Figure 1. Estimated 10-Year Energy Savings
Case study boosting productivity
Figure 2. Estimated Greenhouse Gas Emissions Avoidance
Case study boosting productivity
Figure 3. Energy Saved vs. Embodied Energy
Case study boosting productivity
Figure 4. Payback Period
Case study boosting productivity
Case study boosting productivity
Case study boosting productivity
Case study boosting productivity
Case study boosting productivity
March 1, 2014

Fourteen tubes of polyurethane sealant and an older suburban Western Pennsylvania home made for a perfect fit to seal in noteworthy energy savings. More than a do-it-yourself weekend project, this endeavor was part of a polyurethane sealant lifecycle assessment (LCA) to demonstrate the benefits of polyurethane sealants. An LCA is a holistic evaluation of the environmental impacts from all stages of a product’s life, from raw material acquisition to end-of-life, according to ISO 14040/44.

It is well known that the envelope of a home or other type of building needs to be sealed to minimize heat or cooling loss. Indeed, a typical home loses as much as 20% of heat through ventilation and drafts, according to the UK-based National Insulation Association.

Bridging the gaps in a home or building can bring significant heating and cooling savings, and ultimately reduce energy usage. The benefits can extend well beyond the individual home or building. This recently completed LCA shows the numbers behind the benefits of a well-sealed home.

 

Location and Home Condition

A two-story, brick façade Colonial home built circa 1955 near Pittsburgh was chosen for the LCA. The product evaluated was a moisture-cure polyurethane sealant applied to the 2,000-sq-ft home. The home, built by George Studen and local craftsmen, features vintage windows that are single pane with storm windows, a vintage natural gas furnace, and electricity supplied via nearby coal/nuclear power plants.

Prior to the project, failed sealant was visible around windows and doors, as well as most headers on the first and second floors. While re-sealing attempts had been made, failed acrylic and silicon sealants were observed. In addition, there were several unsealed penetrations into the home’s envelope for cables, pipes and venting. On a positive note, some of the basement window headers were well sealed.

To prepare the site, the existing sealant was removed. The best method for sealant removal was the use of an oscillating scraper, followed by a wire brush. The substrate was then prepped with a solvent wipe.

 

Initial Testing and Sealant Application

Researchers had a blower door test conducted before applying the new sealant. Settings were based on the test standard specified by the Canadian General Standards Board in depressurization mode. During the initial testing, air gaps were discovered in the living room door, around the base of a stairway window, the top joint of the door to the garage, the top of a basement window and the southwest and northwest basement corners. The gaps were found by observing air that deflected plastic strips and by comparing infrared thermal images with the blower door on vs. with it off. Gaps with active leaks registered a lower temperature on the infrared pictures.

The next step was the purchase of approximately 14 tubes of moisture-curing polyurethane sealant. The manufacturer’s data sheet for the sealant indicated that the sealant is ASTM C-920 class 25 rated, and compliant with the California Air Resources Board (CARB), the South Coast Air Quality Management District for Orange County, Calif., and the Ozone Transport Commission.

The sealant was applied to seal gaps, such as those around doors, windows, holes for pipes and cables, and those discovered in the southwest and northwest basement corners, in the home’s envelope.

 

Results

Researchers conducted a second blower door test after the sealant application. Given the minimal investment—less than $75 to purchase the polyurethane sealant—the study’s results were impressive.

• A comparison of the blower door testing performed before and after the sealant application showed a 25% reduction in airflow. More specifically, the steady-state air flow before was 2,817 cu ft/min (CFM) at
50 Pascals (Pa); afterward it was 2,118 CFM at 50 Pa.

• The sealant application contributed to an estimated 10-year energy savings equivalent to a 60-watt bulb operating for 12.7 years continuously, based on a 70% efficiency furnace and an air conditioner seasonal energy-efficiency ratio (SEER) of 10. (See Figure 1.)

• Estimated greenhouse gas emissions avoidance during a 10-year period is equivalent to 32 acres of U.S. forest. (See Figure 2.)

• There is approximately 10 times the amount of energy savings per year compared with the amount of energy embodied in the sealant. (See Figure 3.)

• A short payback period—as little as four months in one estimate—quickly offsets the initial investment in a polyurethane sealant. (See Figure 4.)

 

Far-Reaching Benefits

Using a polyurethane sealant to bridge the gaps in a home or other type of building can bring significant heating and cooling savings through reduced energy usage. In this case, application of a polyurethane sealant in a 1955 Colonial home in the Pittsburgh area reduced airflow by 25% based on before and after blower door testing. As this LCA demonstrates, the seemingly simple act of sealing a home’s drafts can lead to benefits that extend well beyond that individual home or building.


 For additional information, visit www.bmsnafta.com. 

KEYWORDS: sealants in construction sustainability

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Jay A. Johnston, Ph.D., is a member of the Business Development group at Bayer MaterialScience LLC and is currently responsible for applications development in adhesive and sealant markets.
Shen Tian is an Environmental Engineer at Bayer MaterialScience LLC.
George Z. Pavlovich is a Consultant formerly with Bayer MaterialScience LLC.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • mouse in hole

    Using Foam Sealants for Pest Prevention

    According to the National Pest Management Association,...
    Finished Adhesives and Sealants
    By: Kevin Corcoran
  • linked network nodes

    Using the Power of AI for Adhesive and Sealant Formulation

    With the help of software solutions, adhesive formulators...
    Finished Adhesives and Sealants
    By: Karen Parker
  • top20-hero.jpg

    2024 ASI Top 20: Leading Global Manufacturers of Adhesives and Sealants

    ASI's annual ranking of the top 20 global adhesive and...
    Pressure-Sensitive Adhesives (PSAs)
Manage My Account
  • eMagazine Issues
  • Newsletters
  • Online Registration
  • Manage My Preferences
  • Subscription Customer Service

More Videos

Popular Stories

henkel

FTC Sues to Block Henkel-Liquid Nails Acquisition, Citing Antitrust Concerns

news on internet screen

Henkel Posts Positive Organic Growth for Third Quarter, Driven by Adhesives Technologies Business

2025 CASE eBook

The 2025 PCI/ASI CASE eBook

ASI Top 20 website

Events

January 15, 2026

From Data Silos to AI Success: Lessons from Collano’s Journey

In this webinar, Raphael Schaller, CTO of Collano, shares how his team envisioned their data to make it usable for AI-driven materials discovery. He reflects on what he would do differently if starting over, and how adopting the Citrine Platform has accelerated learning, collaboration, and innovation across the organization.

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Products

Structural Adhesives: Properties, Characterization and Applications

Structural Adhesives: Properties, Characterization and Applications

See More Products

ASI CASE EBOOK

ASI webinar

Related Articles

  • Berry Plastics

    Case Study: Managing Energy Use in Manufacturing

    See More
  • Corrugated converter and high costs

    Case Study: Corrugated Converter "Sticks It" to High Costs

    See More
  • Comprehensive materials data

    Case Study: Material and Product Intelligence for the Adhesives and Sealants Industry

    See More

Related Products

See More Products
  • 9780080447087.jpg

    Volume 2: Handbook of Adhesives and Sealants, 1st Edition

  • 9781771880299.jpg

    Polysulfide Oligomer Sealants: Synthesis, Properties and Applications

  • 9781574447170.jpg

    Sealants in Construction, Second Edition

See More Products

Events

View AllSubmit An Event
  • June 20, 2012

    Spray Polyurethane Foam Case Study: On-site MDI Monitoring

    MDI (polyisocyanurate) and recommended safety considerations will be covered as they relate to a home weatherization upgrade.
View AllSubmit An Event

Related Directories

  • General Sealants Inc.

    For over 60 years, General Sealants has manufactured sealants (e.g., butyl, silicone, polysulfide, polyolefin, polyacrylic, ethylene propylene) and serves a diverse customer base in the aerospace, telecommunication, automotive OEM, composites, HVAC, pipeline, highway, industrial manufacturing, construction, and RV/caravan industries.
×

Keep the info flowing with our newsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Manufacturing Division
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing