Adhesives Mag logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Adhesives Mag logo
  • NEW PRODUCTS
  • NEWS
    • Adhesives & Sealants Headlines
    • Mergers/Acquisitions
    • Market Trends
    • TOP 20
  • TOPICS
    • Finished Adhesives and Sealants
    • Pressure-Sensitive Adhesives (PSAs)
    • Coatings
    • Raw Materials and Chemicals
    • Materials Handling/Processing
    • Meter/Mix/Dispense
    • Curing
    • Testing/Quality Control
    • Packaging of Adhesives & Sealants
    • Converting/Packaging
    • Composites
    • Sustainability
  • EVENTS
    • MAX
    • ASI Academy
    • Events Calendar
  • COLUMNS
    • European Perspectives
    • Strategic Solutions
    • Supply Chain Strategies
    • Tape Talk
  • MULTIMEDIA
    • Videos
    • Podcasts
    • Webinars
    • eBooks
  • EXPLORE
    • Adhesives in Action
    • Blog
    • ASI Store
    • Industry Links
    • Market Research
    • Classifieds
  • DIRECTORIES
    • Buyers' Guide
    • Global Adhesives & Sealants Directory
    • Raw Materials, Chemicals, Polymers and Additives Handbook
    • Equipment Handbook
    • Distributor Directory
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • ADVERTISE
      • Custom Content & Marketing Services
    • CONTACT
  • SIGN UP!
CuringFinished Adhesives and SealantsRaw Materials and ChemicalsFormulatorsManufacturersEnd User Features

Achieving Adhesion to Difficult Substrates

A new material can be used to improve adhesion in a variety of substrates.

By Mike J. Idacavage
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Figure 1. Molecular Structure Strategy
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
Achieving Adhesion to Difficult Substrates
September 2, 2014

Adhesion, or lack of it, is one of the most critical attributes for most adhesives, coatings and inks. A variety of options can be explored when it comes to adhesion. Two of the most common types of adhesion are mechanical and chemical. Mechanical adhesion occurs when adhesive materials physically lock into the crevices of the surface. This requires that the substrate surface be physically abraded or chemically etched, unless the substrate has a naturally rough surface.

Chemical adhesion can be improved through the use of coupling agents, such as silane acrylates, or through under curing a primer coating. When improved adhesion was recently required in several different UV-curable applications, a specific material was developed that could be used for a variety of applications.

 

Strategy

Visible-light-cured adhesives have been an essential part of light-cured dental systems since the technology was first accepted. Generally speaking, light-cured dental adhesion promoters must retain their adhesion in challenging environments, such as the mouth. They must also be effective to a range of substrates (e.g., titanium, bone, glass, etc.).

After examining several adhesion promoters used in the dental industry, it was determined that most of these materials have similar functionality. In many cases, the molecule has a carboxylic acid group attached to the molecule. This group is important in achieving the desired bonding to the surface. It is also necessary to get the molecule to crosslink with the rest of the dental formulation. To achieve this crosslinking, a methacrylate group is another part of the parent structure. As the desired target in this study was a relatively low molecular weight, low-viscosity monomer to facilitate blending with the rest of the formulation, the carboxylic acid and (meth)acrylate group was viewed as essential, with the rest of the molecule being kept as small as possible to avoid any undesirable properties.

The basic strategy can be seen in Figure 1. In essence, a polar group A is grafted onto either a methacrylate or acrylate molecule to result in an adhesion promoter C. The R and R1 groups were varied in this experimental work.

 

Test Results

A series of potential adhesion promoters were synthesized by varying the polar group and attaching either methacrylate or acrylate functionality. These materials have been given the product code PL-2XXX. In addition to the base structure C, an adhesion promoter with phosphate functionality (PL-2110) and an acrylic acrylate (PL-2317) were also prepared and tested along with the targeted series.

In the first round of evaluations, a mixture comprising 97% adhesion promoter and 3% photoinitiator were mixed, drawn down on the test substrate and then cured under UV light. Once the sample was cured, they were tested using the typical cross hatch test (ASTM D3359-09). The results for a series of metal substrates can be seen in Table 1. For some of the test substrates, wetting out of the simple formulation was unsuccessful, thus resulting in samples that were insufficient to test. These are labeled NA in the Table 1.

In a typical end-use formulation, additives would usually be incorporated to help promote wetting of the substrate, therefore eliminating this type of failure. With the success seen on metal substrates, the program was extended to an evaluation of the adhesion promoters on different plastic substrates. These results are shown in Table 2. Once again, NA is used to indicate when a wetting out problem occurred with the pure adhesion promoter in this evaluation.

There are two common plastic substrates that are missing in Table 2. The series of adhesion promoters was tested on both untreated polyethylene and polypropylene. In all cases, good adhesion results were not obtained on these two substrates. When formulating coatings for either PE or PP, the typical approach to pre-treat the substrate with a technique such as corona, flame or plasma is usually required.

When approaching the selection of the type of UV-curable group that would work the best for adhesion promotion, many formulators will show a preference for either a methacrylate or acrylate depending on their previous experience. This study presented the opportunity to compare the effect of either an acrylate or methacrylate on adhesion when the rest of the molecule remains the same. In this study, PL-2122 and PL-2212 share the same polar group A (see Figure 1) but differ in that PL-2122 is a methacrylate and PL-2212 is an acrylate. In the same vein, PL-2155 is the methacrylate equivalent of PL-2263. There appears to be no consistent advantage in using an acrylate or a methacrylate group when it comes to optimizing the adhesion characteristics of the adhesion promoter.

Glass is a challenging substrate to adhere to, yet can be found in a range of UV-curable applications. An assortment of adhesion promoters were evaluated on clean float (window) glass. As can be seen in Table 3, it is possible to achieve a high level of adhesion when using a basic structure such as Adhesion Promoter C.

The test results reported so far in this article were based on a system using only the adhesion promoter as the UV-curable material. In almost all practical formulations, there is usually a mixture of UV-curable products used to achieve the desired end product performance. While a material may perform one way when it is the sole component in a formulation, different results may be obtained when it is part of a mixture. The performance of one of the adhesion promoters (PL-2121) blended in with an aliphatic urethane diacrylate (Exothane 26) was evaluated. As typical levels of adhesion promoters in formulations tend to be less than 10%, a range of blends were made at various levels of PL-2121 in Exothane 26. The photoinitiator used was PL-450 at a 3% level. The results are reported in Table 4.

The base Exothane 26 can be seen to have minimum adhesion when used as the only component (0% PL-2121). This is typical for many aliphatic urethane diacrylates. As expected, as the amount of PL-2121 was added to the formulation, the adhesion increases accordingly. While these results matched expectations, the test results are highly dependent on the combination of resin components, adhesion promoters and substrates. Additional work is needed to be able to predict with a high degree of accuracy the level of adhesion with any particular combination of materials and substrates.

 

Improving Adhesion

Based on results seen in the dental market, a strategy was developed to target a relatively low-molecular-weight, low-viscosity adhesion promoter for industrial applications. A series of molecules was prepared by varying the energy-curable group (acrylate and methacrylate) and the polar functionality to promote adhesion. These materials were evaluated on a wide range of substrates ranging from metals to plastics to glass.

It was demonstrated that it is possible to significantly improve adhesion to challenging substrates using variations of the generic adhesion promoter structure C. Simple test formulations have shown that the appropriate adhesion promoter will improve adhesion when blended in a typical range of 2-10%. These lab results have been confirmed through several recent commercial applications.


For more information, contact the author at (610) 442-6589 or mike.idacavage@esstechinc.com, or visit www.esstechinc.com.

KEYWORDS: adhesion adhesives in medical/dental ultraviolet (UV) curing

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Mike J. Idacavage, Ph.D., is Vice President of Business Development at PL Industries, a Division off Esstech Inc.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • mouse in hole

    Using Foam Sealants for Pest Prevention

    According to the National Pest Management Association,...
    Finished Adhesives and Sealants
    By: Kevin Corcoran
  • linked network nodes

    Using the Power of AI for Adhesive and Sealant Formulation

    With the help of software solutions, adhesive formulators...
    Finished Adhesives and Sealants
    By: Karen Parker
  • top20-hero.jpg

    2024 ASI Top 20: Leading Global Manufacturers of Adhesives and Sealants

    ASI's annual ranking of the top 20 global adhesive and...
    Finished Adhesives and Sealants
Manage My Account
  • eMagazine Issues
  • Newsletters
  • Online Registration
  • Manage My Preferences
  • Subscription Customer Service

More Videos

Popular Stories

image of a graph representing markets

Sika Announces Acquisition of Gulf Seal in Saudi Arabia

Picture of two men and one woman in dark suits

Bodo Möller Chemie Makes Management Change for CASE Business Unit

news on internet screen

Henkel Posts Positive Organic Growth for Third Quarter, Driven by Adhesives Technologies Business

ASI Top 20 website

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Products

Structural Adhesives: Properties, Characterization and Applications

Structural Adhesives: Properties, Characterization and Applications

See More Products

ASI CASE EBOOK

Related Articles

  • aerospace

    Adhering to Difficult Substrates with Silicone Adhesives

    See More
  • Adhesion Promotion on Inorganic and Organic Substrates

    See More
  • Polyurethane Laminating Adhesives for Hard-to-Bond Substrates

    Polyurethane Laminating Adhesives for Hard-to-Bond Substrates

    See More

Related Products

See More Products
  • adhesion aspects.jpg

    Adhesion Aspects in MEMS/NEMS

  • biomedical.jpg

    Adhesion in Pharmaceutical, Biomedical, and Dental Fields

  • adhesion.jpg

    Laser Surface Modification and Adhesion

See More Products

Related Directories

  • DuPont

    DuPont delivers a broad range of technology-based products and solutions to OEMs and the aftermarket. Working across the value chain, we develop material systems solutions for demanding applications and environments. Additionally, we encourage a collaborative approach to e-mobility solutions making it easy for customers to partner with us.
  • Mactac

    Mactac is a trusted leader in the pressure-sensitive adhesive (PSA) industry. Robust adhesive technologies, technical expertise, and a flexible asset footprint position Mactac to deliver high performing and innovate solutions. With a full range of adhesives – hot melt, solvent, emulsion, and UV – Mactac’s PSA materials serve a wide array of industries, and its custom-engineered PSA tapes for bonding, mounting, and fastening applications meet or exceed the performance capabilities of other bonding methods. Mactac’s longstanding commitment to performance, quality, sustainability, and customer satisfaction, empowers the company to continue to set the standard for excellence in the industry. Mactac is a Lintec company. More information can be found at Mactac.com.
×

Keep the info flowing with our newsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Manufacturing Division
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing