Adhesives Mag logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Adhesives Mag logo
  • NEW PRODUCTS
  • NEWS
    • Adhesives & Sealants Headlines
    • Mergers/Acquisitions
    • Market Trends
    • TOP 20
  • TOPICS
    • Finished Adhesives and Sealants
    • Pressure-Sensitive Adhesives (PSAs)
    • Coatings
    • Raw Materials and Chemicals
    • Materials Handling/Processing
    • Meter/Mix/Dispense
    • Curing
    • Testing/Quality Control
    • Packaging of Adhesives & Sealants
    • Converting/Packaging
    • Composites
    • Sustainability
  • EVENTS
    • MAX
    • ASI Academy
    • Events Calendar
  • COLUMNS
    • European Perspectives
    • Strategic Solutions
    • Supply Chain Strategies
    • Tape Talk
  • MULTIMEDIA
    • Videos
    • Podcasts
    • Webinars
    • eBooks
  • EXPLORE
    • Adhesives in Action
    • Blog
    • ASI Store
    • Industry Links
    • Market Research
    • Classifieds
  • DIRECTORIES
    • Buyers' Guide
    • Global Adhesives & Sealants Directory
    • Raw Materials, Chemicals, Polymers and Additives Handbook
    • Equipment Handbook
    • Distributor Directory
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • ADVERTISE
      • Custom Content & Marketing Services
    • CONTACT
  • SIGN UP!
Adhesives and Sealants TopicsInfo For...CompositesFormulatorsManufacturers

Getting Stronger

July 1, 2011
A Rice University lab has created a self-strengthening nanocomposite material.

Rice University graduate student Brent Carey positions a piece of nanocomposite material in the DMA device. (Credit: Jeff Fitlow/Rice University)


Researchers at Rice University have created a synthetic material that gets stronger from repeated stress, much like the body strengthens bones and muscles after repeated workouts. Work by the Rice lab of Pulickel Ajayan, professor in mechanical engineering and materials science and of chemistry, shows the potential of stiffening polymer-based nanocomposites with carbon nanotube fillers.

The trick, it seems, lies in the complex, dynamic interface between nanostructures and polymers in carefully engineered nanocomposite materials. The team recently reported its discovery in the journal ACS Nano.

A small block of nanocomposite material proved its ability to stiffen under strain at a Rice University laboratory. (Credit: Ajayan Lab/Rice University)

Testing Material Properties

Brent Carey, a graduate student in Ajayan’s lab, found the interesting property while testing the high-cycle fatigue properties of a composite he made by infiltrating a forest of vertically aligned, multi-walled nanotubes with polydimethylsiloxane (PDMS), an inert, rubbery polymer. To his surprise, repeatedly loading the material didn’t seem to damage it at all. In fact, the stress made it stiffer.

Carey, whose research is sponsored by a NASA fellowship, used dynamic mechanical analysis (DMA) to test this material. He found that after 3.5 million compressions (five per second) over about a week’s time, the stiffness of the composite had increased by 12% and showed the potential for even further improvement.

“It took a bit of tweaking to get the instrument to do this,” Carey said. “DMA generally assumes that your material isn’t changing in any permanent way. In the early tests, the software kept telling me, ‘I’ve damaged the sample!’ as the stiffness increased. I also had to trick it with an unsolvable program loop to achieve the high number of cycles.”

Materials scientists know that metals can strain-harden during repeated deformation. Such strain-hardening is a result of the creation and jamming of defects-known as dislocations-in their crystalline lattice. Polymers, which are made of long, repeating chains of atoms, do not behave the same way. Thus, the team is not sure precisely why their synthetic material behaves as it does. “We were able to rule out further crosslinking in the polymer as an explanation,” Carey said. “The data shows that there’s very little chemical interaction, if any, between the polymer and the nanotubes, and it seems that this fluid interface is evolving during stressing.”

“The use of nanomaterials as a filler increases this interfacial area tremendously for the same amount of filler material added,” Ajayan said. “Hence, the resulting interfacial effects are amplified as compared with conventional composites. For engineered materials, people would love to have a composite like this. This work shows how nanomaterials in composites can be creatively used.”

Bone Behavior

The researchers also found one other truth about this nanocomposite phenomenon: Simply compressing the material did not change its properties; only dynamic stress-deforming it again and again-made it stiffer.

Carey drew an analogy between their material and bones. “As long as you’re regularly stressing a bone in the body, it will remain strong,” he said. “For example, the bones in the racket arm of a tennis player are denser. Essentially, this is an adaptive effect our body uses to withstand the loads applied to it. Our material is similar in the sense that a static load on our composite doesn’t cause a change. You have to dynamically stress it in order to improve it.”

Cartilage may be a better comparison-and possibly even a future candidate for nanocomposite replacement. “These properties may be attractive for the development of an artificial cartilage that can respond to the forces being applied to it while remaining pliable in areas that are not being stressed,” Carey said.

Both researchers noted this is the kind of basic research that asks more questions than it answers. While they can easily measure the material’s bulk properties, it is an entirely different story to understand how the polymer and nanotubes interact at the nanoscale.

“People have been trying to address the question of how the polymer layer around a nanoparticle behaves,” Ajayan said. “It’s a very complicated problem. But fundamentally, it’s important if you’re an engineer of nanocomposites. From that perspective, I think this is a beautiful result. It tells us that it’s feasible to engineer interfaces that make the material do unconventional things.”

The co-authors of the paper are former Rice postdoctoral researcher Lijie Ci; assistant professor of mechanical engineering at the University of Bridgeport Prabir Patra; and associate professor at the Federal University of Minas Gerais, Brazil, Glaura Goulart Silva. Rice University and the NASA Graduate Student Researchers Program funded the research. For more information, visit www.rice.edu.
KEYWORDS: nanomaterials polymers

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • mouse in hole

    Using Foam Sealants for Pest Prevention

    According to the National Pest Management Association,...
    Adhesives and Sealants Topics
    By: Kevin Corcoran
  • linked network nodes

    Using the Power of AI for Adhesive and Sealant Formulation

    With the help of software solutions, adhesive formulators...
    Adhesives and Sealants Topics
    By: Karen Parker
  • top20-hero.jpg

    2024 ASI Top 20: Leading Global Manufacturers of Adhesives and Sealants

    ASI's annual ranking of the top 20 global adhesive and...
    Finished Adhesives and Sealants
Manage My Account
  • eMagazine Issues
  • Newsletters
  • Online Registration
  • Manage My Preferences
  • Subscription Customer Service

More Videos

Popular Stories

image of a graph representing markets

Sika Announces Acquisition of Gulf Seal in Saudi Arabia

Picture of two men and one woman in dark suits

Bodo Möller Chemie Makes Management Change for CASE Business Unit

news on internet screen

Henkel Posts Positive Organic Growth for Third Quarter, Driven by Adhesives Technologies Business

ASI Top 20 website

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Products

Structural Adhesives: Properties, Characterization and Applications

Structural Adhesives: Properties, Characterization and Applications

See More Products

ASI CASE EBOOK

Related Articles

  • Tips for Getting the Most Out of Your Industrial Training Efforts

    See More
  • glass

    Adhesives and Sealants Can Benefit as New Homes are Getting Larger

    See More
  • EDITOR'S MEMO: Getting (Im)Personal

    See More

Related Products

See More Products
  • composite.jpg

    Composite Materials: Properties, Characterisation, and Applications

  • 4.png

    Progress in Adhesion and Adhesives, Volume 7

See More Products

Related Directories

  • Palmer Holland Inc.

    Palmer Holland is an employee-owned, North American specialty chemical and ingredient distributor of raw materials with 50+ account managers stationed throughout the U.S. and Canada. Our vertically aligned sales team uses in-depth market analysis to bring unparalleled industry knowledge directly to you. From finding the perfect formulation to getting material onsite faster, our job is to make sure your business performs at its best.
×

Keep the info flowing with our newsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Manufacturing Division
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing