Adhesives Mag logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Adhesives Mag logo
  • NEW PRODUCTS
  • NEWS
    • Adhesives & Sealants Headlines
    • Mergers/Acquisitions
    • Market Trends
    • TOP 20
  • TOPICS
    • Finished Adhesives and Sealants
    • Pressure-Sensitive Adhesives (PSAs)
    • Coatings
    • Raw Materials and Chemicals
    • Materials Handling/Processing
    • Meter/Mix/Dispense
    • Curing
    • Testing/Quality Control
    • Packaging of Adhesives & Sealants
    • Converting/Packaging
    • Composites
    • Sustainability
  • EVENTS
    • MAX
    • ASI Academy
    • Events Calendar
  • COLUMNS
    • European Perspectives
    • Strategic Solutions
    • Supply Chain Strategies
    • Tape Talk
  • MULTIMEDIA
    • Videos
    • Podcasts
    • Webinars
    • eBooks
  • EXPLORE
    • Adhesives in Action
    • Blog
    • ASI Store
    • Industry Links
    • Market Research
    • Classifieds
  • DIRECTORIES
    • Buyers' Guide
    • Global Adhesives & Sealants Directory
    • Raw Materials, Chemicals, Polymers and Additives Handbook
    • Equipment Handbook
    • Distributor Directory
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • ADVERTISE
      • Custom Content & Marketing Services
    • CONTACT
  • SIGN UP!
CoatingsFormulatorsManufacturers

Carbon Nanotube-Based Coatings

New coatings containing CNTs offer enhanced strength and corrosion resistance.

By Charlie Simpson
Carbon nanotube-based coatings
This U.S. Army Corp demonstration project (Fort Bragg, N.C.) used a two-coat CNT-based zinc-rich epoxy primer/urethane topcoat system as a replacement for a three-coat mil-spec zinc epoxy primer/epoxy intermediate/urethane topcoat system.
Carbon nanotube-based coatings
Figure 1. Single-Walled Carbon Nanotube
Carbon nanotube-based coatings
Figure 2. Conventional Zinc-Rich Epoxy Primer
Carbon nanotube-based coatings
Figure 3. CNT-Modified Zinc-Rich Epoxy Primer
Carbon nanotube-based coatings
Carbon nanotube-based coatings
Carbon nanotube-based coatings
Carbon nanotube-based coatings
May 1, 2013

Carbon nanotubes (CNTs) are nanometer-scale tubular structures consisting entirely of carbon atoms (see Figure 1). They represent a newly discovered elemental form of carbon and have remarkable properties in terms of mechanical strength, thermal conductance and electrical conductivity. CNTs are the strongest materials ever discovered, with tensile strengths reported to be 50 times that of steel. They can also have conductivities 1,000 times that of copper.

Since their discovery, CNTs have been an intense focus area in nanotechnology research. Advancements in synthesis technologies have now allowed for the large-scale production of CNTs such that these materials are finding their way into commercial product applications.

CNTs are available in a variety of forms, including single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). In addition, MWNTs can be produced having a “Russian doll” structure consisting of individual tubes within tubes, or having a “parchment” structure consisting of a continuous, multi-rolled sheet of carbon. CNTs can also come in a variety of chiralities based on how the sheet of carbon atoms are connected together (including so-called “zig-zag” and “armchair” configurations), as well as in a range of different sizes, with typical diameters of 1-3 nm and lengths that approach several microns (with aspect ratios exceeding 1,000x).

Different types of CNTs can exhibit large differences in terms of strength, conductivity and other properties. Commercially available CNTs normally consist of complex mixtures of tube types and sizes, thus making proper CNT selection a critical requirement for successful results in a given application.

Use of Carbon Nanotubes in Corrosion-Control Coatings

A new series of corrosion-control coatings containing CNTs is now being developed and made available for end-user sampling. These coatings have enhanced strength and electrical conductivity due to the inclusion of CNTs, while also incorporating sacrificial metal particles (e.g., Zn, Al, Mg) for corrosion inhibition via cathodic protection. These coatings can be applied using standard painting equipment (conventional and HVLP air spray, airless spray, brush, roller, etc.) and are based on traditional coating polymers, including epoxy and urethane chemistries. CNTs allow sacrificial metal-filled primers to be formulated at much reduced metal content vs. traditional systems.

Although epoxy primers filled with zinc dust (e.g., MIL-PRF-24441/19) have been widely used for heavy-duty industrial maintenance applications for many years, these primers (also known as zinc-rich primers) must be formulated with very high levels of zinc dust (80-90% wt) to ensure point-to-point contact of zinc particles and effective galvanic activity (see Figure 2). As such, these coatings can be brittle/porous and exhibit poor substrate and/or inter-coat adhesion due to the binder-starved condition of the coating film. The application of an intermediate coating is normally required to stabilize the primer film before topcoat application.

Alternatively, in a CNT/Zn-based epoxy primer, CNTs are used to establish conductive pathways within a coating film so that lower levels of zinc metal are required (see Figure 3). This results in a tougher, more binder-rich primer film that exhibits better flexibility and adhesion. An intermediate coating is not required before final topcoat application. The use of a two-coat, CNT-based system can thus provide considerable project cost/time savings vs. conventional three-coat systems.

The establishment of conductive networks in the coating film occurs due to the unique ability of carbon nanotubes to bond together and form rope-like structures. Strong van der Waals interactions occur between CNTs. They can also bond together covalently through a process known as p-stacking.

Field Testing of CNT/Epoxy Zinc-Rich Coatings

In 2009, a CNT-based epoxy primer containing zinc dust was demonstrated in a field trial with the U.S. Army Corp of Engineers at Fort Bragg, N.C. In this project, a CNT/Zn-based epoxy primer/urethane coating system was applied to the exterior of a steel storage tank that was suffering from corrosion damage.

The existing coating, a conventional three-coat zinc-rich epoxy/epoxy intermediate/urethane topcoat system, was removed with abrasive blasting to SSPC SP10 near-white metal specifications, followed by the application of the two-coat CNT-based system. Extended immersion, salt-fog and outdoor fence testing of the coatings was also conducted. Results have been excellent, and the U.S. Army Corp is considering possible implementation of the coatings as a replacement for the traditional three-coat, mil-spec systems.

A Technology Platform for Advanced Coatings

The excellent results obtained with CNT/Zn-based systems during field and laboratory testing with the U.S. Army Corp show that these coatings may offer an important technology platform for enhanced corrosion-protective systems in other coating applications beyond the atmospheric protection of steel substrates. For example, other types of coatings can be developed and tailored for different applications through the careful selection of CNT types, polymer chemistries, and sacrificial metal choice.

For example, research is now being conducted on CNT-based coatings containing sacrificial magnesium pigments for the protection of aluminum substrates in aerospace applications. Magnesium can provide cathodic protection to aluminum in the same way that zinc provides protection to steel, and significantly reduced levels of magnesium are needed when conductive CNTs are incorporated.

Current aerospace primers rely on a passivating mechanism to control corrosion by incorporating hexavalent chromate pigments that are highly carcinogenic and environmentally unsafe. A CNT-based coating using sacrificial magnesium would operate by a completely different mechanism and would not require chromate pigments. Hazardous pretreatment processes could be potentially eliminated as well.

Given the severity of corrosion problems in the U.S. and abroad, and the need for improved coatings, CNT-based coatings for corrosion-control applications should generate significant interest within the industry. The direct annual costs of corrosion in the U.S. are over $400 billion per year, and CNT-based coatings may represent an important new technology to help reduce costs.


 For additional information, visit www.teslanano.com. 

KEYWORDS: nanomaterials protective coatings

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Charlie Simpson is a Technical Director at Tesla NanoCoatings Inc.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • mouse in hole

    Using Foam Sealants for Pest Prevention

    According to the National Pest Management Association,...
    Adhesives and Sealants Topics
    By: Kevin Corcoran
  • linked network nodes

    Using the Power of AI for Adhesive and Sealant Formulation

    With the help of software solutions, adhesive formulators...
    Finished Adhesives and Sealants
    By: Karen Parker
  • top20-hero.jpg

    2024 ASI Top 20: Leading Global Manufacturers of Adhesives and Sealants

    ASI's annual ranking of the top 20 global adhesive and...
    Adhesives and Sealants Topics
Manage My Account
  • eMagazine Issues
  • Newsletters
  • Online Registration
  • Manage My Preferences
  • Subscription Customer Service

More Videos

Popular Stories

image of a graph representing markets

Sika Announces Acquisition of Gulf Seal in Saudi Arabia

Picture of two men and one woman in dark suits

Bodo Möller Chemie Makes Management Change for CASE Business Unit

news on internet screen

Henkel Posts Positive Organic Growth for Third Quarter, Driven by Adhesives Technologies Business

ASI Top 20 website

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Products

Structural Adhesives: Properties, Characterization and Applications

Structural Adhesives: Properties, Characterization and Applications

See More Products

ASI CASE EBOOK

Related Articles

  • DSM and Novomer to Develop First Carbon Dioxide-Based Resin for Coatings

    See More
  • DSM and Novomer to Develop First Carbon Dioxide-Based Resin for Coatings

    See More
  • Huntsman MIRALON carbon nanotubes

    Huntsman Announces Pilot Plant for MIRALON Carbon Nanotube Materials

    See More

Related Products

See More Products
  • nanostructured.jpg

    Nanostructured Thin Films and Coatings Mechanical Properties

  • biobased wood.jpg

    Bio-based Wood Adhesives: Preparation, Characterization, and Testing

  • linings.jpg

    Corrosion of Linings & Coatings

See More Products
×

Keep the info flowing with our newsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Manufacturing Division
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing