Adhesives Mag logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Adhesives Mag logo
  • NEW PRODUCTS
  • NEWS
    • Adhesives & Sealants Headlines
    • Mergers/Acquisitions
    • Events Calendar
    • Market Trends
  • TOPICS
    • Finished Adhesives and Sealants
    • Pressure-Sensitive Adhesives (PSAs)
    • Coatings
    • Raw Materials and Chemicals
    • Materials Handling/Processing
    • Meter/Mix/Dispense
    • Curing
    • Testing/Quality Control
    • Packaging of Adhesives & Sealants
    • Converting/Packaging
    • Composites
    • Sustainability
  • COLUMNS
    • European Perspectives
    • Strategic Solutions
    • Supply Chain Strategies
    • Tape Talk
  • TOP 20
  • MULTIMEDIA
    • Videos
    • Podcasts
    • Webinars
    • eBooks
  • EXPLORE
    • Adhesives in Action
    • Blog
    • ASI Store
    • Industry Links
    • Market Research
    • Classifieds
  • DIRECTORIES
    • Buyers' Guide
    • Global Adhesives & Sealants Directory
    • Raw Materials, Chemicals, Polymers and Additives Handbook
    • Equipment Handbook
    • Distributor Directory
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • ADVERTISE
      • Custom Content & Marketing Services
    • CONTACT
  • SIGN UP!
Adhesives and Sealants TopicsMeter/Mix/Dispense

Influence of Rheology on Mixing Behavior in Static Mixers

The second of a series on static mixing, this article focuses on how the rheology of a material impacts mixing behavior.

By Joachim Schöck
colors mixing
October 20, 2023

Adhesives are currently becoming increasingly important in a wide variety of applications in the dental, industrial, and health care industries. Two-component adhesives are being used more and more because of their unique properties, and static mixers are the most frequent choice for mixing the two-component material before application.

When selecting the optimum static mixer, the rheological properties of the starting components and their mixing ratio play an important role. In particular, highly viscous materials with a high proportion of fillers often have a pronounced non-Newtonian behavior. Therefore, a good understanding of the rheological behavior of the components to be mixed is important.

 

Basics of Rheology

A classification of the different material properties can be found in the Table 1.

Rheological Classification of materials, Source: Wikipedia Rheology - Wikipedia
TABLE 1 » Rheological Classification of materials, Source: Wikipedia Rheology - Wikipedia

For Newtonian fluids, viscosity is independent of load. This means that the viscosity depends on the temperature, but not on the shear stress. Only a small group of mostly low-viscous fluids (such as water, milk, salad oil) exhibit such constant viscosity. For most fluids, the viscosity changes under shear stress; these are called non-Newtonian fluids.

Non-Newtonian fluids can exhibit shear-thinning (structurally viscous) or shear-thickening (dilatant) flow behavior. Shear-thinning flow behavior is characterized by a decrease in viscosity with increasing shear rate. Typical materials exhibiting this behavior are coatings, adhesives, polymer solutions, and polymer melts. Shear thickening means that viscosity increases with increasing shear rate. Materials that typically exhibit such behavior include highly filled dispersions, such as ceramic suspensions, starch dispersions, sometimes dental fillings (dental composites), and special composites for protective clothing.

Since non-Newtonian fluids are shear dependent, measured viscosities should always be reported together with the exact shear conditions and, in the best case, as a function of shear rate. Often, the viscosity can be approximated section-wise by a power law.

A material is called viscoelastic if it shows a mixture of viscous and elastic behavior. Plasticity is the behavior if a material that behaves as a solid under low applied stresses starts to flow above a certain level of stress, called yield stress

Often, the viscosity is not only a function of the shear rate, but additionally also time-dependent. If such materials are exposed to shear stresses, they do not change their viscosity instantly, but over time. As time-dependent shear-thinning materials are called thixotropic, shear-thickening materials are called rheopectic.

In addition to the rheological behavior, the viscosity of a material is also strongly dependent on temperature. Generally, in the case of liquids the viscosity decreases with increasing temperature. This can have a strong impact. For example, the viscosity of a typical engine oil decreases by a factor of three when the temperature is increased from 23 °C to 50 °C.

 

Impact of Rheological Properties on the Performance of Static Mixers

The optimal achievable mixing quality depends on the type of mixer, the number of mixing elements, the mixing ratio, and the viscosity ratio of the two components. A pre-defined mixer generally achieves the best mixing quality when materials with a mixing ratio of 1 to 1 and the same viscosity are mixed.

In many cases, however, this optimum condition does not exist and a rather high-viscous, shear-thinning resin is to be mixed with a rather low-viscous Newtonian curing agent. Since optimum mixing occurs at equal viscosity, it is advantageous to select a mixer that mixes at a shear rate that results in equal viscosities of the two components.

However, the rheological behavior of the material not only influences the mixing quality, but in particular also the pressure loss in the mixer. If, for example, a high-viscous material is to be discharged with a high volume flow, the resulting high pressure loss in the mixing element leads to high mechanical loads on the cartridge and the mixer housing. These loads can have a negative impact on functionality (pre-flow of one component, blow-up of the cartridge or mixer housing) or ultimately even damage the plastic parts.

In such a case, it is advisable to choose a mixer with a bigger diameter, which reduces the pressure loss significantly.

 

Material Guideline to Achieve Good Mixing Results

It is advantageous if material manufacturers, together with the mixer manufacturer, ensure the easy mixability of new materials and components already in the formulation phase. At this stage, it is even possible to design a customized mixer for such an application. Even if an exclusive solution is not desired, good mixability of the components can be ensured in advance, which then leads later on to shorter mixers with fewer mixing elements and lower pressure loss.

From a rheological point of view, good mixability is achieved by observing the following guidelines:

  1. Both components should have a similar rheological behavior. Similar rheological behavior means that the viscosity over shear strain rate curves run in a log/log diagram in parallel and very close to each other. In such a case it is guaranteed that in a wide range of operating conditions, similar mixing quality can be achieved.
  2. The volumetric mixing ratio of both components should be close to one. Application tests with material with a high volumetric mixing ratio yield a much higher number of mixing elements necessary to reach an adequate mixing quality.
  3. Due to the shear thinning behavior of many materials, the actual viscosity of the material in the mixer is lower than specified in the data sheet because of the high shear rates in the mixer. Typical shear rates in a static mixer are in the range of 20 > S > 200 1/s. Nonetheless, a too-high actual viscosity should not be exceeded, as this will at best result in the desired volume flow not being achieved. In the worst case, this will lead to a loss of function or mechanical failure.

 

Special Mixer Geometries for Materials with Challenging Rheology

If for various reasons it is not possible to follow the above formulation guidelines of an easy-to-mix material, medmix® also offers systems to mix materials with challenging rheological behavior:

Left: Blueline Mixer; Right: X-Grid Mixer
FIGURE 1 » Left: Blueline Mixer; Right: X-Grid Mixer

 

Blueline System

This system has been specifically designed for applications where a high-viscosity material is to be applied at a high flow rate. From the cartridge, to the mixer, to the mixer tip, the individual parts of the Blueline system have been optimized for the lowest possible pressure drop. This enables the user to discharge even material with a very high actual viscosity at an acceptable flow rate.

 

X-Grid Mixers

The X-Grid mixer is ideally suited for resin/hardener systems that are difficult to mix — e.g. 2K adhesives, epoxies, polyurethanes, silicones, resins or varnishes — as well as for components with a large viscosity and/or mixing ratio. In addition, the dispersing effect of insoluble materials is significantly higher. Thus, X-Grid technology can be used for low- and medium-viscous materials that are difficult to mix with current static mixing technology. For such materials, the use of X-Grid technology can result in mixers that are significantly shorter than current mixers.

 

Learn more about medmix at medmix.swiss.

KEYWORDS: rheology static mixers

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Joachim Schöck, Senior Technology Expert, Development Engineering, at medmix

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • mouse in hole

    Using Foam Sealants for Pest Prevention

    According to the National Pest Management Association,...
    Finished Adhesives and Sealants
    By: Kevin Corcoran
  • linked network nodes

    Using the Power of AI for Adhesive and Sealant Formulation

    With the help of software solutions, adhesive formulators...
    Adhesives and Sealants Topics
    By: Karen Parker
  • top20-hero.jpg

    2024 ASI Top 20: Leading Global Manufacturers of Adhesives and Sealants

    ASI's annual ranking of the top 20 global adhesive and...
    Adhesives and Sealants Topics
Manage My Account
  • eMagazine Issues
  • eNewsletter
  • Online Registration
  • Manage My Preferences
  • Subscription Customer Service

More Videos

Popular Stories

Picture of three men and one woman cutting a ribbon

H.B. Fuller Opens Adhesives and Sealants Facility in UAE

Picture of Noelle Sieradzki

Mactac Announces Changes to Leadership Team

Aerial view of Bostik manufacturing facility

Bostik Invests in Added Capacity at Massachusetts Manufacturing Plant

ASI Top 20 website

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Products

Structural Adhesives: Properties, Characterization and Applications

Structural Adhesives: Properties, Characterization and Applications

See More Products

ASI CASE EBOOK

Related Articles

  • GettyImages-93129347.jpg

    Parameters to Quantify Mixing Efficiency of Static Mixers

    See More
  • GettyImages-1279079620.jpg

    Introduction to Static Mixing in Laminar Flows

    See More
  • Dropper

    The Next Generation of Static Mixing Nozzles

    See More

Related Directories

  • Re Mixers Inc.

    Re Mixers, Inc. manufactures Xemex nozzles, a revolutionary new static mixer providing optimal mixing with 75% less adhesive waste. Made in the USA, Xemex nozzles offer the most sustainable and reliable solution for your most critical processes. Contact us to learn more about all of our dispensing solutions.
  • Ashby Cross Co. Inc.

    Engineers, designs & supplies adhesive filling and dispensing equipment, and other supplies for vacuum potting, molding, casting, potting, beading, wire impregnation, RTM, composite manufacturing, cable end sealing, structural bonding, and cartridge filling. Equipment includes manual tabletop to completely automated systems, including robotics. Many options available.
  • Fisnar

    Offers a large selection of dispensing products, including valves for every material and a wide range of economic industrial robots suitable for automating a bench assembly operation or for integration into larger in-line processes.
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing