Adhesives Mag logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Adhesives Mag logo
  • NEW PRODUCTS
  • NEWS
    • Adhesives & Sealants Headlines
    • Mergers/Acquisitions
    • Market Trends
    • TOP 20
  • TOPICS
    • Finished Adhesives and Sealants
    • Pressure-Sensitive Adhesives (PSAs)
    • Coatings
    • Raw Materials and Chemicals
    • Materials Handling/Processing
    • Meter/Mix/Dispense
    • Curing
    • Testing/Quality Control
    • Packaging of Adhesives & Sealants
    • Converting/Packaging
    • Composites
    • Sustainability
  • EVENTS
    • MAX
    • ASI Academy
    • Events Calendar
  • COLUMNS
    • European Perspectives
    • Strategic Solutions
    • Supply Chain Strategies
    • Tape Talk
  • MULTIMEDIA
    • Videos
    • Podcasts
    • Webinars
    • eBooks
  • EXPLORE
    • Adhesives in Action
    • Blog
    • ASI Store
    • Industry Links
    • Market Research
    • Classifieds
  • DIRECTORIES
    • Buyers' Guide
    • Global Adhesives & Sealants Directory
    • Raw Materials, Chemicals, Polymers and Additives Handbook
    • Equipment Handbook
    • Distributor Directory
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • ADVERTISE
      • Custom Content & Marketing Services
    • CONTACT
  • SIGN UP!
SustainabilityPressure-Sensitive Adhesives (PSAs)FormulatorsManufacturers

Recycling Pressure-Sensitive Products

By Jihui Guo, Larry Gwin, Carl Houtman, Mark Kroll, Steven J. Severtson
asi0412-UnivMinn-equation-slide.jpg
asi0412-UnivMinn-img-slide.jpg
asi0412-UnivMinn-Slide1-slide.jpg
asi0412-UnivMinn-Slide2-slide.jpg
asi0412-UnivMinn-Slide3-slide.jpg
asi0412-UnivMinn-Slide4-slide.jpg
asi0412-UnivMinn-Slide5-slide.jpg
asi0412-UnivMinn-table-slide.jpg
asi0412-UnivMinn-equation-slide.jpg
asi0412-UnivMinn-img-slide.jpg
asi0412-UnivMinn-Slide1-slide.jpg
asi0412-UnivMinn-Slide2-slide.jpg
asi0412-UnivMinn-Slide3-slide.jpg
asi0412-UnivMinn-Slide4-slide.jpg
asi0412-UnivMinn-Slide5-slide.jpg
asi0412-UnivMinn-table-slide.jpg
March 19, 2012

Here, the behavior of the base emulsion is separated from that of the formulated product. The difficulty is that the latex must be coated onto a release liner without the aid of a wetting agent. Through some trial and error, it was found that an acceptable film can be coated with the use of certain rheology modifiers that were found to have a negligible affect on the fragmentation behavior of the PSA.

Initially in this study, 25 label-grade and general-use adhesives were investigated. This provided a broad range of monomers, surfactants and properties. Previously published studies had claimed correlations between screening removal efficiencies and performance properties of the adhesive, but these were not evident in this study.15 Guo et al. reported that “highly hydrophobic polymers yielded larger adhesive particles that were easily removed during the screening operation.”16 A relationship was observed between the composition of the adhesive polymer and its removal.11

The commercial PSAs studied represent 25 different monomer combinations using 15 different monomers. It was seen that those PSAs containing both vinyl acetate and acrylic acid monomers provided poor removal efficiencies. In addition, it was found that the PSAs demonstrating only modest removal efficiencies contain either vinyl acetate or acrylic acid. These results indicate that the combination of particular monomers produces a critical change in the property controlling the fragmentation of the adhesive, and this change is not apparent from the mechanical, surface, or performance properties of dry films.

Given the likely tie between mechanical strength and the tendency to fragment, studies were designed to examine the impact of moisture on the strength of PSA films. A convenient method for gauging the strength of a material is through tensile testing. However, given their highly viscoelastic nature, this is a difficult task for PSA films; it is further complicated by the need to be carried out in a temperature-controlled, aqueous environment. For our approach,11 tensile samples are produced by coating the PSA film over two separate pieces of 25-mm-wide PET films that are placed against each other to form a continuous substrate for the adhesive. All of the films cast for this study are targeted for 1 mil (25.4 µm). The ends of the PET are not coated and serve as gripping tabs. The tests are carried out in a temperature-controlled water bath at a crosshead speed of 10 mm/min.

In using this test to analyze the commercial PSA films, the same trends identified in the removal efficiency data were observed. Kinetic studies (tensile strength vs. soaking time) showed that the changes in strength induced in PSA films occurred in the first few seconds of being submerged into the water.11 These changes were substantial, but the strength quickly stabilized. It was also found that soaking PSA films prior to repulping did not change their removal efficiencies. These results indicate that once water-based acrylic films are placed in water, their properties can be very different from those of the dry films.

The information obtained from studying the commercial PSAs led to the development of model acrylic water-based adhesive emulsions, which were synthesized using the same additives and approach. The model emulsions are representative of those used in PS labels. They are composed mostly (~ 81 mass%) of soft monomers n-butyl acrylate (BA) and 2-ethylhexyl acrylate (EHA); various combinations of the hard monomers (~ 16-19 mass%) methyl methacrylate (MMA), vinyl acetate (VA) and styrene (STY); and the functional monomers (~ 0-3 mass%) acrylic acid (AA) and methacrylic acid (MAA). The specific monomer composition and various properties for the model PSAs, including removal efficiencies (RE) measured at 50°C, are shown in Table 1.

As was the case for the commercial formulations, a comparison of removal efficiencies with the monomer compositions indicates that the combination of VA and AA results in films with the lowest removal efficiencies. Keeping everything else in the formulation fixed, replacing VA with MMA or STY increases removal efficiency. Also, replacing AA with MAA increases removal efficiency substantially. The experimental Log Kow for the monomers VA, MMA, STY, AA and MAA, where Kow is the octanol-water distribution coefficient, are 0.73, 1.38, 2.95, 0.35 and 0.98.17 Log Kow has been shown to correlate with measures of a chemical’s aversion to water; thus, it appears that the results are generally consistent with the hypothesis that increasing hydrophobicity enhances the removal efficiency of the adhesive polymer.18

However, it should be emphasized that only the presence of the most hydrophilic of these monomers results in low removals, and both VA and AA are required to produce the extremely poor efficiencies. Avoiding these and similar monomers appears to be of key importance in making water-based PSAs more recycling compatible. Furthermore, increasing removal efficiencies does not appear to be simply a matter of using the most hydrophobic monomers. For example, removal efficiencies were found to be reduced by replacing the harder BA (Tg=-54°C, Log Kow=2.36) with the significantly more hydrophobic EHA (Tg=-80°C, Log Kow=4.09). It appears that under certain circumstances (e.g., monomers possessing sufficiently high hydrophobicities), the hardness of the monomer is of greater importance, and in general, the wet strength of the PSA film is what ultimately determines its fragmentation behavior and thus removal efficiency. This is demonstrated in Figure 3, which shows the wet-tensile strength of the model PSAs, along with their screening removal efficiencies.

KEYWORDS: films hot melts labels recycling/recyclability

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Jihui Guo is an Associate Scientist with The Dow Chemical Co.
Larry Gwin Serves as Senior Research Associate with Franklin International.
Carl Houtman is a Research Chemical Engineer with the U.S. Department of Agriculture's Forest Products Laboratory.
Mark Kroll serves as a Research Chemist/Senior Section Leader for H.B. Fuller Co.
Steven J. Severtson is a professor in the Department of Bioproducts and Biosystems Engineering at the University of Minnesota.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • mouse in hole

    Using Foam Sealants for Pest Prevention

    According to the National Pest Management Association,...
    Finished Adhesives and Sealants
    By: Kevin Corcoran
  • linked network nodes

    Using the Power of AI for Adhesive and Sealant Formulation

    With the help of software solutions, adhesive formulators...
    Raw Materials and Chemicals
    By: Karen Parker
  • top20-hero.jpg

    2024 ASI Top 20: Leading Global Manufacturers of Adhesives and Sealants

    ASI's annual ranking of the top 20 global adhesive and...
    Pressure-Sensitive Adhesives (PSAs)
Previous 1 2 3 4 Next
Manage My Account
  • eMagazine Issues
  • Newsletters
  • Online Registration
  • Manage My Preferences
  • Subscription Customer Service

More Videos

Popular Stories

image of a graph representing markets

Sika Announces Acquisition of Gulf Seal in Saudi Arabia

Picture of two men and one woman in dark suits

Bodo Möller Chemie Makes Management Change for CASE Business Unit

news on internet screen

Henkel Posts Positive Organic Growth for Third Quarter, Driven by Adhesives Technologies Business

ASI Top 20 website

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Products

Structural Adhesives: Properties, Characterization and Applications

Structural Adhesives: Properties, Characterization and Applications

See More Products

ASI CASE EBOOK

Related Articles

  • Chemsultants figure 1

    Manufacturing Pressure-Sensitive Adhesive Products: A Coating and Laminating Process

    See More
  • 2002-2003 Tape Products Directoryby The Pressure Sensitive Tape Council

    See More
  • Development of Environmentally Benign Pressure Sensitive Adhesives

    See More

Related Products

See More Products
  • technology-of-pressure-sens.gif

    Technology of Pressure-Sensitive Adhesives and Products

  • pressure-sensitive-advesive.gif

    Pressure-Sensitive Adhesives and Applications

See More Products

Related Directories

  • Pressure Sensitive Tape Council

    The Pressure Sensitive Tape Council (PSTC) is a nonprofit North American trade association dedicated to helping the industry produce quality pressure sensitive adhesive tape products in the global marketplace. PSTC members range in size from privately owned companies with less than 50 employees to multi-national, fortune 100 companies.
×

Keep the info flowing with our newsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Manufacturing Division
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing