This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Novel, all-acrylic pressure-sensitive adhesive compositions with inherently lower surface energy display significantly improved adhesion to LSE substrates such as polyethylene and polypropylene.
The prevailing trend toward the use of lighter weight and lower cost engineered plastics in automotive, construction, aerospace, electronics, and other industrial uses has created a need for pressure-sensitive materials that can bond well to these new, inherently low-surface-energy (LSE) plastics. This article discusses novel, all-acrylic compositions with inherently lower surface energy that display significantly improved adhesion to LSE substrates such as polyethylene and polypropylene.
Microchannel array. Engineers at Oregon State University (OSU) have invented a new way to use surface-mount adhesives in the production of low-temperature, microchannel heat exchangers-an advance that will make this