This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Analytical instruments can ensure reliable product performance of self-adhesive materials by measuring critical characteristics like adhesive tack, peel, thickness, and composition
When traditional chemical adhesives fail to sufficiently bond dissimilar types of materials, engineers often turn to plasma treatments to solve complex adhesion problems
Whether bonding metal to plastic, silicon to glass, polymers to other polymers of different durometers, biological content to polymeric microtiter plates or even bonding to polytetrafluoroethylene (PTFE), plasma can be used to promote adhesion. Adhesion promotion can be achieved by increasing the surface free energy through several mechanisms, including precision cleaning, chemically or physically modifying the surface, increasing surface area by roughening, and primer coatings, according to Michael Barden of PVA TePla, a company that designs and manufactures plasma systems.